Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.698
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38612682

RESUMO

Squalene epoxidase (SQLE) is a key enzyme in the mevalonate-cholesterol pathway that plays a critical role in cellular physiological processes. It converts squalene to 2,3-epoxysqualene and catalyzes the first oxygenation step in the pathway. Recently, intensive efforts have been made to extend the current knowledge of SQLE in cancers through functional and mechanistic studies. However, the underlying mechanisms and the role of SQLE in cancers have not been fully elucidated yet. In this review, we retrospected current knowledge of SQLE as a rate-limiting enzyme in the mevalonate-cholesterol pathway, while shedding light on its potential as a diagnostic and prognostic marker, and revealed its therapeutic values in cancers. We showed that SQLE is regulated at different levels and is involved in the crosstalk with iron-dependent cell death. Particularly, we systemically reviewed the research findings on the role of SQLE in different cancers. Finally, we discussed the therapeutic implications of SQLE inhibitors and summarized their potential clinical values. Overall, this review discussed the multifaceted mechanisms that involve SQLE to present a vivid panorama of SQLE in cancers.


Assuntos
Neoplasias , Esqualeno Mono-Oxigenase , Humanos , Esqualeno Mono-Oxigenase/genética , Ácido Mevalônico , Neoplasias/genética , Morte Celular , Colesterol
2.
BMC Genomics ; 25(1): 237, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438980

RESUMO

BACKGROUND: Here, we investigated the underlying transcriptional-level evidence behind phytochemical differences between two metabolically extreme genotypes of Thymus daenensis. The genotypes 'Zagheh-11' (thymol/carvacrol type, poor in essential oil [EO] [2.9%] but rich in triterpenic acids) and 'Malayer-21' (thymol type and rich in EO [3.8%]) were selected from an ongoing breeding program and then clonally propagated for further experimental use. MATERIALS AND METHODS: GC-MS, GC-FID, and HPLC-PDA were utilized to monitor the fluctuation of secondary metabolites at four phenological stages (vegetative, bud burst, early, and full-flowering stages). The highest phytochemical divergence was observed at early flowering stage. Both genotypes were subjected to mRNA sequencing (approximately 100 million paired reads) at the aforementioned stage. The expression patterns of four key genes involved in the biosynthesis of terpenoids were also validated using qRT-PCR. RESULTS: Carvacrol content in 'Zagheh-11' (26.13%) was approximately 23 times higher than 'Malayer-21' (1.12%). Reciprocally, about 10% higher thymol was found in 'Malayer-21' (62.15%). Moreover, the concentrations of three major triterpenic acids in 'Zagheh-11' were approximately as twice as those found in 'Malayer-21'. Transcriptome analysis revealed a total of 1840 unigenes that were differentially expressed, including terpene synthases, cytochrome P450, and terpenoid backbone genes. Several differentially expressed transcription factors (such as MYB, bZIP, HB-HD-ZIP, and WRKY families) were also identified. These results suggest that an active cytosolic mevalonate (MVA) pathway may be linked to higher levels of sesquiterpenes, triterpenic acids, and carvacrol in 'Zagheh-11'. The chloroplastic pathway of methyl erythritol phosphate (MEP) may have also contributed to a higher accumulation of thymol in Malayer-21. Indeed, 'Zagheh-11' showed higher expression of certain genes (HMGR, CYP71D180, ß-amyrin 28-monooxygenase, and sesquiterpene synthases) in the MVA pathway, while some genes in the MEP pathway (including DXR, ispG, and γ-terpinene synthase) were distinctly expressed in Malayer-21. Future efforts in metabolic engineering of MVA/MEP pathways may benefit from these findings to produce increased levels of desired secondary metabolites at commercial scale.


Assuntos
Cimenos , Ácido Mevalônico , Óleos Voláteis , Humanos , Fosfatos , Timol , Genótipo , Compostos Fitoquímicos , RNA-Seq , Terpenos , Expressão Gênica
3.
Physiol Rep ; 12(5): e15969, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38453353

RESUMO

Fast-twitch muscles are less susceptible to disuse atrophy, activate the mechanistic target of rapamycin complex 1 (mTORC1) signaling pathway, and increase protein synthesis under prolonged muscle disuse conditions. However, the mechanism underlying prolonged muscle disuse-induced mTORC1 signaling activation remains unclear. The mevalonate pathway activates the mTORC1 signaling pathway via the prenylation and activation of Ras homolog enriched in brain (Rheb). Therefore, we investigated the effects of hindlimb unloading (HU) for 14 days on the mevalonate and mTORC1 signaling pathways in the plantaris muscle, a fast-twitch muscle, in adult male rats. Rats were divided into HU and control groups. The plantaris muscles of both groups were harvested after the treatment period, and the expression and phosphorylation levels of metabolic and intracellular signaling proteins were analyzed using Western blotting. We found that HU increased the expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase, the rate-limiting enzyme of the mevalonate pathway, and activated the mTORC1 signaling pathway without activating AKT, an upstream activator of mTORC1. Furthermore, HU increased prenylated Rheb. Collectively, these findings suggest that the activated mevalonate pathway may be involved in the activation of the Rheb/mTORC1 signaling pathway without AKT activation in fast-twitch muscles under prolonged disuse conditions.


Assuntos
Ácido Mevalônico , Proteínas Proto-Oncogênicas c-akt , Ratos , Masculino , Animais , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Ácido Mevalônico/metabolismo , Ácido Mevalônico/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Elevação dos Membros Posteriores/fisiologia , Transdução de Sinais/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo
4.
Front Immunol ; 15: 1328401, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38481989

RESUMO

Background: Ascaris lumbricoides cystatin (Al-CPI) prevents the development of allergic airway inflammation and dextran-induced colitis in mice models. It has been suggested that helminth-derived cystatins inhibit cathepsins in dendritic cells (DC), but their immunomodulatory mechanisms are unclear. We aimed to analyze the transcriptional profile of human monocyte-derived DC (moDC) upon stimulation with Al-CPI to elucidate target genes and pathways of parasite immunomodulation. Methods: moDC were generated from peripheral blood monocytes from six healthy human donors of Denmark, stimulated with 1 µM of Al-CPI, and cultured for 5 hours at 37°C. RNA was sequenced using TrueSeq RNA libraries and the NextSeq 550 v2.5 (75 cycles) sequencing kit (Illumina, Inc). After QC, reads were aligned to the human GRCh38 genome using Spliced Transcripts Alignment to a Reference (STAR) software. Differential expression was calculated by DESEq2 and expressed in fold changes (FC). Cell surface markers and cytokine production by moDC were evaluated by flow cytometry. Results: Compared to unstimulated cells, Al-CPI stimulated moDC showed differential expression of 444 transcripts (|FC| ≥1.3). The top significant differences were in Kruppel-like factor 10 (KLF10, FC 3.3, PBH = 3 x 10-136), palladin (FC 2, PBH = 3 x 10-41), and the low-density lipoprotein receptor (LDLR, FC 2.6, PBH = 5 x 10-41). Upregulated genes were enriched in regulation of cholesterol biosynthesis by sterol regulatory element-binding proteins (SREBP) signaling pathways and immune pathways. Several genes in the cholesterol biosynthetic pathway showed significantly increased expression upon Al-CPI stimulation, even in the presence of lipopolysaccharide (LPS). Regarding the pathway of negative regulation of immune response, we found a significant decrease in the cell surface expression of CD86, HLA-DR, and PD-L1 upon stimulation with 1 µM Al-CPI. Conclusion: Al-CPI modifies the transcriptome of moDC, increasing several transcripts encoding enzymes involved in cholesterol biosynthesis and SREBP signaling. Moreover, Al-CPI target several transcripts in the TNF-alpha signaling pathway influencing cytokine release by moDC. In addition, mRNA levels of genes encoding KLF10 and other members of the TGF beta and the IL-10 families were also modified by Al-CPI stimulation. The regulation of the mevalonate pathway and cholesterol biosynthesis suggests new mechanisms involved in DC responses to helminth immunomodulatory molecules.


Assuntos
Cistatinas , Monócitos , Humanos , Animais , Camundongos , Ascaris lumbricoides , Ácido Mevalônico/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Diferenciação Celular , Citocinas/metabolismo , Inflamação/metabolismo , Imunidade , Células Dendríticas , RNA/metabolismo
5.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38473803

RESUMO

Mevalonate kinase (MevK) is an important enzyme in the mevalonate pathway that catalyzes the phosphorylation of mevalonate into phosphomevalonate and is involved in juvenile hormone biosynthesis. Herein, we present a structure model of MevK from the red flour beetle Tribolium castaneum (TcMevK), which adopts a compact α/ß conformation that can be divided into two parts: an N-terminal domain and a C-terminal domain. A narrow, deep cavity accommodating the substrate and cofactor was observed at the junction between the two domains of TcMevK. Computational simulation combined with site-directed mutagenesis and biochemical analyses allowed us to define the binding mode of TcMevK to cofactors and substrates. Moreover, TcMevK showed optimal enzyme activity at pH 8.0 and an optimal temperature of 40 °C for mevalonate as the substrate. The expression profiles and RNA interference of TcMevK indicated its critical role in controlling juvenile hormone biosynthesis, as well as its participation in the production of other terpenoids in T. castaneum. These findings improve our understanding of the structural and biochemical features of insect Mevk and provide a structural basis for the design of MevK inhibitors.


Assuntos
Besouros , Fosfotransferases (Aceptor do Grupo Álcool) , Tribolium , Animais , Tribolium/genética , Besouros/metabolismo , Ácido Mevalônico/metabolismo , Hormônios Juvenis/metabolismo
6.
Appl Microbiol Biotechnol ; 108(1): 245, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38421431

RESUMO

Terpenes are valuable industrial chemicals whose demands are increasingly being met by bioengineering microbes such as E. coli. Although the bioengineering efforts commonly involve installing the mevalonate (MVA) pathway in E. coli for terpene production, the less studied methylerythritol phosphate (MEP) pathway is a more attractive target due to its higher energy efficiency and theoretical yield, despite its tight regulation. In this study, we integrated an additional copy of the entire MEP pathway into the E. coli genome for stable, marker-free terpene production. The genomically integrated strain produced more monoterpene geraniol than a plasmid-based system. The pathway genes' transcription was modulated using different promoters to produce geraniol as the reporter of the pathway flux. Pathway genes, including dxs, idi, and ispDF, expressed from a medium-strength promoter, led to the highest geraniol production. Quantifying the MEP pathway intermediates revealed that the highest geraniol producers had high levels of isopentenyl pyrophosphate (IPP) and dimethylallyl pyrophosphate (DMAPP), but moderate levels of the pathway intermediates upstream of these two building blocks. A principal component analysis demonstrated that 1-deoxy-D-xylulose 5-phosphate (DXP), the product of the first enzyme of the pathway, was critical for determining the geraniol titer, whereas MEP, the product of DXP reductoisomerase (Dxr or IspC), was the least essential. This work shows that an intricate balance of the MEP pathway intermediates determines the terpene yield in engineered E. coli. The genetically stable and intermediate-balanced strains created in this study will serve as a chassis for producing various terpenes. KEY POINTS: • Genome-integrated MEP pathway afforded higher strain stability • Genome-integrated MEP pathway produced more terpene than the plasmid-based system • High monoterpene production requires a fine balance of MEP pathway intermediates.


Assuntos
Monoterpenos Acíclicos , Ácido Mevalônico , Terpenos , Escherichia coli/genética , Monoterpenos , Fosfatos
7.
EMBO Mol Med ; 16(3): 445-474, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38355749

RESUMO

TP53-mutant acute myeloid leukemia (AML) and myelodysplastic neoplasms (MDS) are characterized by chemotherapy resistance and represent an unmet clinical need. Chimeric antigen receptor (CAR) T-cells might be a promising therapeutic option for TP53-mutant AML/MDS. However, the impact of TP53 deficiency in AML cells on the efficacy of CAR T-cells is unknown. We here show that CAR T-cells engaging TP53-deficient leukemia cells exhibit a prolonged interaction time, upregulate exhaustion markers, and are inefficient to control AML cell outgrowth in vitro and in vivo compared to TP53 wild-type cells. Transcriptional profiling revealed that the mevalonate pathway is upregulated in TP53-deficient AML cells under CAR T-cell attack, while CAR T-cells engaging TP53-deficient AML cells downregulate the Wnt pathway. In vitro rational targeting of either of these pathways rescues AML cell sensitivity to CAR T-cell-mediated killing. We thus demonstrate that TP53 deficiency confers resistance to CAR T-cell therapy and identify the mevalonate pathway as a therapeutic vulnerability of TP53-deficient AML cells engaged by CAR T-cells, and the Wnt pathway as a promising CAR T-cell therapy-enhancing approach for TP53-deficient AML/MDS.


Assuntos
Leucemia Mieloide Aguda , Ácido Mevalônico , Humanos , Ácido Mevalônico/metabolismo , Via de Sinalização Wnt , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Imunoterapia Adotiva , Linfócitos T , Proteína Supressora de Tumor p53/genética
8.
Biophys J ; 123(5): 622-637, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38327055

RESUMO

Serial crystallography and time-resolved data collection can readily be employed to investigate the catalytic mechanism of Pseudomonas mevalonii 3-hydroxy-3-methylglutaryl (HMG)-coenzyme-A (CoA) reductase (PmHMGR) by changing the environmental conditions in the crystal and so manipulating the reaction rate. This enzyme uses a complex mechanism to convert mevalonate to HMG-CoA using the co-substrate CoA and cofactor NAD+. The multi-step reaction mechanism involves an exchange of bound NAD+ and large conformational changes by a 50-residue subdomain. The enzymatic reaction can be run in both forward and reverse directions in solution and is catalytically active in the crystal for multiple reaction steps. Initially, the enzyme was found to be inactive in the crystal starting with bound mevalonate, CoA, and NAD+. To observe the reaction from this direction, we examined the effects of crystallization buffer constituents and pH on enzyme turnover, discovering a strong inhibition in the crystallization buffer and a controllable increase in enzyme turnover as a function of pH. The inhibition is dependent on ionic concentration of the crystallization precipitant ammonium sulfate but independent of its ionic composition. Crystallographic studies show that the observed inhibition only affects the oxidation of mevalonate but not the subsequent reactions of the intermediate mevaldehyde. Calculations of the pKa values for the enzyme active site residues suggest that the effect of pH on turnover is due to the changing protonation state of His381. We have now exploited the changes in ionic inhibition in combination with the pH-dependent increase in turnover as a novel approach for triggering the PmHMGR reaction in crystals and capturing information about its intermediate states along the reaction pathway.


Assuntos
Hidroximetilglutaril-CoA Redutases , NAD , Hidroximetilglutaril-CoA Redutases/química , Hidroximetilglutaril-CoA Redutases/metabolismo , NAD/metabolismo , Cristalografia , Ácido Mevalônico/metabolismo , Concentração de Íons de Hidrogênio , Cinética
9.
Acta Crystallogr D Struct Biol ; 80(Pt 3): 203-215, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38411551

RESUMO

Mevalonate kinase is central to the isoprenoid biosynthesis pathway. Here, high-resolution X-ray crystal structures of two mevalonate kinases are presented: a eukaryotic protein from Ramazzottius varieornatus and an archaeal protein from Methanococcoides burtonii. Both enzymes possess the highly conserved motifs of the GHMP enzyme superfamily, with notable differences between the two enzymes in the N-terminal part of the structures. Biochemical characterization of the two enzymes revealed major differences in their sensitivity to geranyl pyrophosphate and farnesyl pyrophosphate, and in their thermal stabilities. This work adds to the understanding of the structural basis of enzyme inhibition and thermostability in mevalonate kinases.


Assuntos
Archaea , Ácido Mevalônico , Ácido Mevalônico/metabolismo , Archaea/metabolismo , Methanosarcinaceae/química , Methanosarcinaceae/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/química
10.
Int J Mol Sci ; 25(4)2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38396837

RESUMO

Antineoplastic therapies for prostate cancer (PCa) have traditionally centered around the androgen receptor (AR) pathway, which has demonstrated a significant role in oncogenesis. Nevertheless, it is becoming progressively apparent that therapeutic strategies must diversify their focus due to the emergence of resistance mechanisms that the tumor employs when subjected to monomolecular treatments. This review illustrates how the dysregulation of the lipid metabolic pathway constitutes a survival strategy adopted by tumors to evade eradication efforts. Integrating this aspect into oncological management could prove valuable in combating PCa.


Assuntos
Antineoplásicos , Neoplasias de Próstata Resistentes à Castração , Neoplasias da Próstata , Masculino , Humanos , Neoplasias de Próstata Resistentes à Castração/patologia , Ácido Mevalônico , Neoplasias da Próstata/metabolismo , Receptores Androgênicos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
11.
J Biol Chem ; 300(2): 105644, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38218226

RESUMO

Intramembrane proteolysis regulates important processes such as signaling and transcriptional and posttranslational abundance control of proteins with key functions in metabolic pathways. This includes transcriptional control of mevalonate pathway genes, thereby ensuring balanced biosynthesis of cholesterol and other isoprenoids. Our work shows that, at high cholesterol levels, signal peptide peptidase (SPP) cleaves squalene synthase (SQS), an enzyme that defines the branching point for allocation of isoprenoids to the sterol and nonsterol arms of the mevalonate pathway. This intramembrane cleavage releases SQS from the membrane and targets it for proteasomal degradation. Regulation of this mechanism is achieved by the E3 ubiquitin ligase TRC8 that, in addition to ubiquitinating SQS in response to cholesterol levels, acts as an allosteric activator of SPP-catalyzed intramembrane cleavage of SQS. Cellular cholesterol levels increase in the absence of SPP activity. We infer from these results that, SPP-TRC8 mediated abundance control of SQS acts as a regulation step within the mevalonate pathway.


Assuntos
Farnesil-Difosfato Farnesiltransferase , Ácido Mevalônico , Ácido Aspártico Endopeptidases , Colesterol/metabolismo , Farnesil-Difosfato Farnesiltransferase/genética , Farnesil-Difosfato Farnesiltransferase/metabolismo , Ácido Mevalônico/metabolismo , Terpenos , Células HEK293 , Humanos
12.
Appl Microbiol Biotechnol ; 108(1): 110, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38229297

RESUMO

Terpenoids are widely used in the food, beverage, cosmetics, and pharmaceutical industries. Microorganisms have been extensively studied for terpenoid production. In yeast, the introduction of the mevalonate (MVA) pathway in organelles in addition to the augmentation of its own MVA pathway have been challenging. Introduction of the MVA pathway into mitochondria is considered a promising approach for terpenoid production because acetyl-CoA, the starting molecule of the MVA pathway, is abundant in mitochondria. However, mitochondria comprise only a small percentage of the entire cell. Therefore, we hypothesized that increasing the total mitochondrial volume per cell would increase terpenoid production. First, we ascertained that the amounts of isopentenyl diphosphate (IPP) and dimethylallyl diphosphate (DMAPP), the final molecules of the MVA pathway, were 15-fold higher of the strain expressing the MVA pathway in mitochondria than in the wild-type yeast strain. Second, we found that different deletion mutants induced different mitochondrial volumes by measuring the mitochondrial volume in various deletion mutants affecting mitochondrial morphology; for example,Δmdm32 increased mitochondrial volume, and Δfzo1 decreased it. Finally, the effects of mitochondrial volume on amounts of IPP/DMAPP and terpenoids (squalene or ß-carotene) were investigated using mutants harboring large or small mitochondria expressing the MVA pathway in mitochondria. Amounts of IPP/DMAPP and terpenoids (squalene or ß-carotene) increased when the mitochondrial volume expanded. Introducing the MVA pathway into mitochondria for terpenoid production in yeast may become more attractive by enlarging the mitochondrial volume. KEY POINTS: • IPP/DMAPP content increased in the strain expressing the MVA pathway in mitochondria • IPP/DMAPP and terpenoid contents are positively correlated with mitochondrial volume • Enlarging the mitochondria may improve mitochondria-mediated terpenoid production.


Assuntos
Compostos Organofosforados , Terpenos , beta Caroteno , Terpenos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Esqualeno , Hemiterpenos/metabolismo , Mitocôndrias/metabolismo , Ácido Mevalônico/metabolismo
13.
J Biosci Bioeng ; 137(1): 16-23, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38042754

RESUMO

Terpenoids are used in various industries, and Saccharomyces cerevisiae is a promising microorganism for terpenoid production. Introducing the mevalonate (MVA) pathway into the mitochondria of a strain with an augmented inherent cytosolic MVA pathway increased terpenoid production but also led to the accumulation of toxic pyrophosphate intermediates that negatively affected terpenoid production. We first engineered the inherent MVA pathway in the cytosol and then introduced the MVA pathway into the mitochondria using several promoter combinations, considering the toxicity of pyrophosphate intermediates. However, the highest titer, 183 mg/L, tends to be only 5% higher than that of the strain that only augmented the inherent MVA pathway (SYCM1; 174 mg/L). Next, we hypothesized that, in addition to the toxicity of pyrophosphate, other compounds in the MVA pathway could affect the squalene titer. Thus, we constructed a combinatorial strain library expressing MVA pathway enzymes in the mitochondria with various promoter combinations. The highest squalene titer (230 mg/L) was 32% higher than that of SYCM1. The promoter set revealed that mitigation of mono- and pyrophosphate compound accumulation was important for mitochondrial usage. This study demonstrated that a combinatorial strain library is useful for discovering the optimal gene expression balance in engineering yeast.


Assuntos
Saccharomyces cerevisiae , Terpenos , Saccharomyces cerevisiae/metabolismo , Ácido Mevalônico/metabolismo , Difosfatos , Esqualeno/metabolismo , Mitocôndrias/genética , Mitocôndrias/metabolismo , Engenharia Metabólica
14.
Metab Eng ; 81: 110-122, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38056688

RESUMO

Monoterpenes are commonly known for their role in the flavors and fragrances industry and are also gaining attention for other uses like insect repellant and as potential renewable fuels for aviation. Corynebacterium glutamicum, a Generally Recognized as Safe microbe, has been a choice organism in industry for the annual million ton-scale bioproduction of amino acids for more than 50 years; however, efforts to produce monoterpenes in C. glutamicum have remained relatively limited. In this study, we report a further expansion of the C. glutamicum biosynthetic repertoire through the development and optimization of a mevalonate-based monoterpene platform. In the course of our plasmid design iterations, we increased flux through the mevalonate-based bypass pathway, measuring isoprenol production as a proxy for monoterpene precursor abundance and demonstrating the highest reported titers in C. glutamicum to date at 1504.6 mg/L. Our designs also evaluated the effects of backbone, promoter, and GPP synthase homolog origin on monoterpene product titers. Monoterpene production was further improved by disrupting competing pathways for isoprenoid precursor supply and by implementing a biphasic production system to prevent volatilization. With this platform, we achieved 321.1 mg/L of geranoids, 723.6 mg/L of 1,8-cineole, and 227.8 mg/L of linalool. Furthermore, we determined that C. glutamicum first oxidizes geraniol through an aldehyde intermediate before it is asymmetrically reduced to citronellol. Additionally, we demonstrate that the aldehyde reductase, AdhC, possesses additional substrate promiscuity for acyclic monoterpene aldehydes.


Assuntos
Corynebacterium glutamicum , Monoterpenos , Monoterpenos/metabolismo , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Ácido Mevalônico/metabolismo , Terpenos/metabolismo , Engenharia Metabólica
15.
Biotechnol J ; 19(1): e2300285, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37953664

RESUMO

Simultaneous modification of the expression levels of many metabolic enzyme genes results in diverse expression ratios of these genes; however, the relationship between gene expression levels and chemical productivity remains unclear. However, clarification of this relationship is expected to improve the productivity of useful chemicals. Supervised machine learning is considered to be an effective means to clarify this relationship. In this study, to improve the productivity of carotenoids in yeast Saccharomyces cerevisiae, we aimed to build a machine-learning model that can predict the optimal gene expression level for carotenoid production. First, we obtained data on the expression levels of mevalonate pathway enzyme genes and carotenoid production. Then, based on these data, we built a machine-learning model to predict carotenoid productivity based on gene expression levels. The prediction accuracy of 0.6292 (coefficient of determination) was achieved using the test data. The maximum predicted carotenoid productivity was 4.3 times higher in the engineered strain than in the parental strain, suggesting that the expression levels of the mevalonate pathway enzyme genes tHMG1 and ERG8 have a particularly large impact on carotenoid productivity. This study could be one of the important achievements in addressing the uncertainty of genotype-phenotype correlations, which is one of the challenges facing metabolic engineering strategies.


Assuntos
Ácido Mevalônico , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Ácido Mevalônico/metabolismo , Carotenoides/metabolismo , Engenharia Metabólica/métodos , Expressão Gênica , Aprendizado de Máquina
16.
Biochim Biophys Acta Gen Subj ; 1868(3): 130547, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38143011

RESUMO

Tumor suppressor p53 is frequently null or mutated in human cancers. Here in this study, DHX33 protein was found to be induced in p53 null cells in vitro, and in p53 mutant lung tumorigenesis in vivo. Cholesterol metabolism through mevalonate pathway is pivotal for cell proliferation and is frequently altered in human cancers. Mice carrying mutant p53 and KrasG12D alleles showed upregulation of mevalonate pathway gene expression. However upon DHX33 loss, their upregulation was significantly debilitated. Additionally, in many human cancer cells, DHX33 knockdown caused inhibition of mavelonate pathway gene transcription. We propose DHX33 locates downstream of mutant p53 and Ras to regulate mevalonate pathway gene transcription and thereby supports cancer development in vivo.


Assuntos
Ácido Mevalônico , Proteína Supressora de Tumor p53 , Humanos , Camundongos , Animais , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Pulmão/metabolismo , Carcinogênese , Transcrição Gênica , RNA Helicases DEAD-box/genética
17.
Enzyme Microb Technol ; 174: 110374, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38147781

RESUMO

The enzymes of the mevalonate pathway need to be improved to achieve high yields of isoprenoids in the yeast Saccharomyces cerevisiae. The red yeast Rhodosporidium toruloides produces high levels of carotenoids and may have evolved to carry a naturally high flux of isoprenoids. Enzymes from such yeasts are likely to be promising candidates for improvement. Towards this end, we have systematically investigated the various enzymes of the mevalonate pathway of R. toruloides and custom synthesized, expressed, and evaluated six key enzymes in S. cerevisiae. The two nodal enzymes geranyl pyrophosphate synthase (RtGGPPS) and truncated HMG-CoA reductase (RttHMG) of R. toruloides showed a significant advantage to the cells for isoprenoid production as seen by a visual carotenoid screen. These two were analyzed further, and attempts were also made at further improvement. RtGGPPS was confirmed to be superior to the S. cerevisiae enzyme, as seen from in vitro activity determinations and in vivo production of the heterologous diterpenoid sclareol. Four mutants were created through rational mutagenesis but were unable to improve the activity further. In the case of RttHMG, functional evaluation of the enzyme revealed that it was very unstable despite functioning very well in S. cerevisiae. We succeeded in stabilizing the enzyme through mutation of a conserved serine in the catalytic region, which did not alter the enzyme activity per se. In vivo evaluation of the mutant revealed that it could enable better sclareol yields. Therefore, these two enzymes from the red yeast are excellent candidates for heterologous isoprenoid production.


Assuntos
Acil Coenzima A , Produtos Biológicos , Diterpenos , Terpenos , Terpenos/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ácido Mevalônico/metabolismo , Carotenoides/metabolismo , Produtos Biológicos/metabolismo
18.
Cell Death Dis ; 14(12): 849, 2023 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-38123597

RESUMO

p140Cap is an adaptor protein involved in assembling multi-protein complexes regulating several cellular processes. p140Cap acts as a tumor suppressor in breast cancer (BC) and neuroblastoma patients, where its expression correlates with a better prognosis. The role of p140Cap in tumor metabolism remains largely unknown. Here we study the role of p140Cap in the modulation of the mevalonate (MVA) pathway in BC cells. The MVA pathway is responsible for the biosynthesis of cholesterol and non-sterol isoprenoids and is often deregulated in cancer. We found that both in vitro and in vivo, p140Cap cells and tumors show an increased flux through the MVA pathway by positively regulating the pace-maker enzyme of the MVA pathway, the 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase (HMGCR), via transcriptional and post-translational mechanisms. The higher cholesterol synthesis is paralleled with enhanced cholesterol efflux. Moreover, p140Cap promotes increased cholesterol localization in the plasma membrane and reduces lipid rafts-associated Rac1 signalling, impairing cell membrane fluidity and cell migration in a cholesterol-dependent manner. Finally, p140Cap BC cells exhibit decreased cell viability upon treatments with statins, alone or in combination with chemotherapeutic at low concentrations in a synergistic manner. Overall, our data highlight a new perspective point on tumor suppression in BC by establishing a previously uncharacterized role of the MVA pathway in p140Cap expressing tumors, thus paving the way to the use of p140Cap as a potent biomarker to stratify patients for better tuning therapeutic options.


Assuntos
Neoplasias da Mama , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Ácido Mevalônico/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Colesterol/metabolismo , Movimento Celular
19.
J Ovarian Res ; 16(1): 218, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37986175

RESUMO

High-grade serous carcinoma (HGSC) is the most common and aggressive subtype of epithelial ovarian cancer, characterized by gain-of-function TP53 mutations originating in the fallopian tube epithelium. Therapeutic intervention occurs at advanced metastatic disease, due to challenges in early-stage diagnosis, with common disease recurrence and therapy resistance despite initial therapy success. The mevalonate pathway is exploited by many cancers and is potently inhibited by statin drugs. Statins have shown anti-cancer activity in many, but not all cancers. Here, we investigated the role of p53 status in relation to mevalonate pathway signaling in murine oviductal epithelial (OVE) cells and identified OVE cell sensitivity to statin inhibition. We found that p53R175H mutant and Trp53 knockout OVE cells have increased mevalonate pathway signaling compared to p53 wild-type OVE cells. Through orthotopic implantation to replicate the fallopian tube origin of HGSC, p53R175H mutant cells upregulated the mevalonate pathway to drive progression to advanced-stage ovarian cancer, and simvastatin treatment abrogated this effect. Additionally, simvastatin was more efficacious at inhibiting cell metabolic activity in OVE cells than atorvastatin, rosuvastatin and pravastatin. In vitro, simvastatin demonstrated potent effects on cell proliferation, apoptosis, invasion and migration in OVE cells regardless of p53 status. In vivo, simvastatin induced ovarian cancer disease regression through decreased primary ovarian tumor weight and increased apoptosis. Simvastatin also significantly increased cytoplasmic localization of HMG-CoA reductase in ovarian tumors. Downstream of the mevalonate pathway, simvastatin had no effect on YAP or small GTPase activity. This study suggests that simvastatin can induce anti-tumor effects and could be an important inhibitor of ovarian cancer progression.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Neoplasias Ovarianas , Feminino , Camundongos , Animais , Humanos , Tubas Uterinas/metabolismo , Sinvastatina/farmacologia , Sinvastatina/metabolismo , Sinvastatina/uso terapêutico , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Ácido Mevalônico/metabolismo , Ácido Mevalônico/uso terapêutico , Células Epiteliais/metabolismo , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/patologia , Carcinoma Epitelial do Ovário/patologia
20.
Cancer Commun (Lond) ; 43(12): 1326-1353, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37920878

RESUMO

BACKGROUND: Metabolism reprogramming plays a vital role in glioblastoma (GBM) progression and recurrence by producing enough energy for highly proliferating tumor cells. In addition, metabolic reprogramming is crucial for tumor growth and immune-escape mechanisms. Epidermal growth factor receptor (EGFR) amplification and EGFR-vIII mutation are often detected in GBM cells, contributing to the malignant behavior. This study aimed to investigate the functional role of the EGFR pathway on fatty acid metabolism remodeling and energy generation. METHODS: Clinical GBM specimens were selected for single-cell RNA sequencing and untargeted metabolomics analysis. A metabolism-associated RTK-fatty acid-gene signature was constructed and verified. MK-2206 and MK-803 were utilized to block the RTK pathway and mevalonate pathway induced abnormal metabolism. Energy metabolism in GBM with activated EGFR pathway was monitored. The antitumor effect of Osimertinib and Atorvastatin assisted by temozolomide (TMZ) was analyzed by an intracranial tumor model in vivo. RESULTS: GBM with high EGFR expression had characteristics of lipid remodeling and maintaining high cholesterol levels, supported by the single-cell RNA sequencing and metabolomics of clinical GBM samples. Inhibition of the EGFR/AKT and mevalonate pathways could remodel energy metabolism by repressing the tricarboxylic acid cycle and modulating ATP production. Mechanistically, the EGFR/AKT pathway upregulated the expressions of acyl-CoA synthetase short-chain family member 3 (ACSS3), acyl-CoA synthetase long-chain family member 3 (ACSL3), and long-chain fatty acid elongation-related gene ELOVL fatty acid elongase 2 (ELOVL2) in an NF-κB-dependent manner. Moreover, inhibition of the mevalonate pathway reduced the EGFR level on the cell membranes, thereby affecting the signal transduction of the EGFR/AKT pathway. Therefore, targeting the EGFR/AKT and mevalonate pathways enhanced the antitumor effect of TMZ in GBM cells and animal models. CONCLUSIONS: Our findings not only uncovered the mechanism of metabolic reprogramming in EGFR-activated GBM but also provided a combinatorial therapeutic strategy for clinical GBM management.


Assuntos
Glioblastoma , Animais , Linhagem Celular Tumoral , Metabolismo Energético , Receptores ErbB/genética , Receptores ErbB/metabolismo , Ácidos Graxos , Glioblastoma/tratamento farmacológico , Glioblastoma/genética , Ligases/metabolismo , Ácido Mevalônico/antagonistas & inibidores , Ácido Mevalônico/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Temozolomida/farmacologia , Temozolomida/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...